第十届全国蔬菜规模化高效育苗技术经验交流会-大会汇报PPT-合并压缩.pdf

返回 相似 举报
第十届全国蔬菜规模化高效育苗技术经验交流会-大会汇报PPT-合并压缩.pdf_第1页
第1页 / 共313页
第十届全国蔬菜规模化高效育苗技术经验交流会-大会汇报PPT-合并压缩.pdf_第2页
第2页 / 共313页
第十届全国蔬菜规模化高效育苗技术经验交流会-大会汇报PPT-合并压缩.pdf_第3页
第3页 / 共313页
第十届全国蔬菜规模化高效育苗技术经验交流会-大会汇报PPT-合并压缩.pdf_第4页
第4页 / 共313页
第十届全国蔬菜规模化高效育苗技术经验交流会-大会汇报PPT-合并压缩.pdf_第5页
第5页 / 共313页
点击查看更多>>
资源描述:
2018 11 27 g 80 82 2 137 187 200 224 500s 1920s 1930s 1940s 1990s 1950s 1980s 2000s 2010s BFB CGMMV 30 50 BFB CGMMV BFB BFB CGMMV CGMMV CGMMV 10 Na3PO4 30min 70 72 72h 0 2 0 3 0 4 0 5 0 13 50 72 105 200 288 5 0 4 28 29 20 22 1 3 50 4 90 95 1 2 3 4 5 10 22 25 18 20 5 10 15 6 8 9 85 90 11 22 25 18 20 80 85 CGMMV LED Lorem ipsum dolor sit amet 15266369825 5 4 3 2 1 6 0 5mm 0 7mm 0 10mm 1 7mm 7 12mm PH EC 100 6 3 1 7 3 4 2 2 600 800 400 600 1cm 1 5cm 28 80 85 2 3 02 03 04 01 28 30 18 20 28 30 16 20 20 10 20 14 0 14 13 2 13 5 7 7 11 12 3 1 4 2 0 1 5 1 7 5 1 55 3 5 40 500 25 2 5 6 1 2 28 30 20 22 50 3h 5h 5 1 22 25 16 18 2 3 4 1 22 25 16 18 2 3 4 1 2 1 5cm 1 3mm 2 1 2 1 5cm 3 1 3mm 2 1 2 1 5cm 3 1 2 1 5cm 1 2 28 30 18 20 1 28 30 18 22 2 70 22 25 16 18 900 1000 3h 5h 900 1000 3h 5h 2 5 3 10 15 1 5 2 3 4 2 3 90 95 6 7 50 60 22 28 6 7 25 28 18 20 7 22 28 16 18 30 13 5 7 20 20 20 19 19 19 1 1 5 5 7 60 10 30g 2 3 64 500 75 600 7 10 2 3 2 3 72 2 400 64 500 100 80 0 07 0 1 40 1000 5 7 3 4 3 5 1 2 3 10 2000 1 2 3 4 2018 11 27 CONTENTS 01 02 03 04 01 01 35000 200 50 20 6 30 2015 01 3 4 ISO9001 2015 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 I I IS S S SO O O O9 9 9 90 0 0 00 0 0 01 1 1 1 2 2 2 20 0 0 01 1 1 15 5 5 5 01 02 02 02 02 02 2006 2010 2014 02 2018 02 02 02 02 02 97 2 96 1 97 2 97 1 96 96 9 96 2 96 8 97 96 8 99 8 99 9 99 9 99 9 99 9 99 9 100 99 8 99 9 99 9 99 8 99 6 99 7 100 99 9 99 7 99 5 99 6 99 5 99 8 95 95 5 96 96 5 97 97 5 98 98 5 99 99 5 100 1 2 3 4 5 6 7 8 9 10 ZX20 G30A G1000 02 1 52 1 81 1 52 1 62 1 91 1 81 1 81 1 9 1 7 1 7 0 0 0 0 09 0 0 0 0 09 0 0 0 0 0 09 0 0 09 0 0 0 0 09 0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 1 2 3 4 5 6 7 8 9 10 ZX20 G30A G1000 02 210 212 215 220 210 215 219 220 215 212 365 360 364 364 368 370 365 359 362 365 955 958 962 956 965 955 965 968 970 965 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1 2 3 4 5 6 7 8 9 10 ZX20 G30A G1000 02 1 2 3 4 03 03 03 03 03 03 03 1 1000L 2 3 4 1 03 03 03 04 04 04 04 04 04 04 04 04 2018 11 27 zhaotgcg 13641342735 2018YFD0201300 1 2 3 Candidatus Liberibacter asiaticus 4 5 6 7 8 9 1600 300 500 1976 31 43 20600 50 5000 10000 2014 08 Leaf or soil wetness high humidity temperature Varietal susceptibility growth stage plant health Virulence and abundance capable of causing disease many are host specific based on Acidovorax citrulli Clavibacter michiganensis pv michiganensis Pseudomonas syringae pv maculicola P syringae pv phaseolicola P syringae pv pisi P syringae pv syringae P sytingae pv tagetis P sytingae pv tomato Xanthomonas campestris pv campestris X campestris pv carotae X campestritris X campestritris pv raphini X campestritris pv vesicatoria X campestritris pv vignicola X campestritris pv viatians 12 Grand Prismatic Spring 60 100 strain 1 High Birth Rate Pathogens 20 30mins 1 NA 2 3 4 1 2 3 4 1 2 3 1 2 3 4 20 10 Clavibacter michiganense subsp sepedonicum Streptomyces scabies Erwinia carotovora Photo courtesy of A L Jones Michigan State University Acidovorax citrulli Ac BFB host Economic importance http www ers usda gov data products chart gallery detail aspx chartId 38120 200 10 23 2014 08 2014 08 2014 08 2014 08 2014 08 2014 08 2014 08 2014 08 0 2014 08 2015 1964 1978 Schaad 1989 9 50 90 1995 15 80 Acidovorax citrulli Schaad et al 2009 Pseudomonas pseudoalcaligenes subsp citrulli Schaad et al 1978 1999 2000 EBBA IMS PCR 19 98 2 PCR M 1 2 3 4 500bp 300bp 10 1000 5 1000 1 1000 CK cfu m L Walcott IMS PCR 16srDNA 10CFU ml Plant disease 2000 84 470 474 Norman Bio PCR ITS 10 CFU ml Canada journal of plant pathology 2002 24 250 258 PCR 16srDNA 2 2004 41 5 329 332 PCR 16srDNA 1 10 2005 Vol 28 No 2 P 43 46 Bio IMS real time PCR ITS 2CFU ml 2007 11 2495 2501 2012 A citrulli 396 87 396 22 260 50 260 19 80 34 80 43 40 8 40 20 16 2 16 13 22 12 22 55 38 5 38 13 SYBR Green I LAMP 1 100 50 8 HCL 10 HCL 12 HCL 8 10 12 CK 1000 1 50 1 100 1 200 1 HCL 3 HCL 5 HCL 1 3 5 A B C D E CK CK 3 HCL 1 2 3 4 5 6 7 A 35 27 2 1 1 2 2 C United States 1 H 1 F United States 1 B 1 3 1 D 1 United States 2 Japan 1 1 E 3 1 1 I India 1 6 4 3 G 1 12 2 1 Group1 73 Group2 45 143 KB KB g mL 1 the concentration of cupric sulphate Strain 300 350 400 450 500 550 600 650 700 AAC29625 AAC92 301 AAC92 300 AAC201 18 AAC98 17 AAC99 5 AAC200 23 AAC200 6 143 14 43 1 pslbtw5 80 77 25 96 14 4 77 78 22 22 pslb23 78 57 33 93 11 15 82 35 30 15 pslb24 76 35 8 87 75 86 31 9 Fc491 86 36 47 73 41 27 84 85 28 03 pslb96 80 65 33 87 36 03 64 44 21 67 pslbtw43 62 96 15 74 26 26 46 43 11 61 g mL 1 g mL 1 pslbtw5 700 Fc491 400 pslb23 700 pslb96 400 pslb24 700 pslbtw43 300 2 pslbtw5 96 77 37 9 18 7 93 02 30 81 pslb23 89 8 27 55 1 9 89 19 27 03 pslb24 90 91 34 09 14 44 94 44 29 17 Fc491 90 24 35 98 42 86 73 33 20 56 pslb96 90 35 22 08 81 82 27 27 pslbtw43 61 54 32 05 48 63 51 22 16 46 Aac7500 30 x 50 x 30 x 50 x AacJ N 500 x 700 x 500 x 700 x AacJ N Aac7500 AB Aac7500 1500 x 1800 x 1500 x 1800 x AacJ N C Aac7500 700 x 1000 x 700 x 1000 x AacJ N D Aac7500 460 x 700 x 460 x 700 x AacJ N Aac7500 1000 x 1500 x 1000 x 1500 x AacJ N E F Aac7500 360 x 500 x 360 x 500 x AacJ N Aac7500 500 x 600 x 500 x 600 x AacJ N G H Aac7500 200 x 300 x 200 x 300 x AacJ N Aac7500 200 x 300 x 200 x 300 x AacJ N I J AacJ N A 7500 AS B 30 EC C 80 EC D 46 WG E 53 8 WG F 20 WP G 47 WP H 3 ME I 2 AS J 30 SC 30 50 500 700 80 1500 1800 AacJ N Aac7500 15mm 700 1000 53 8 500 600 1000 1500 470 750 360 AacJ N 10 15 mm 1 2 1 1 1 8 1 15000 PCR PCR 12 5 15 1 2 1000 1 1 600 2018 11 28 2018 11 28 2018 11 28 2018 11 28 6 2 87 4 16 1 12 53 95 3 46 7 100 300 7 8 65 78 45 WP 22 3 44 11 39 9 7 10 2 3 1973 1983 2008 2 26 24 5 3911 1059 1605 1605 202 401 1 Xanthomonas campestris pv citri 71 2 Pseudomonas syringae pv Lachrymans 62 3 Xanthomonas campestris pv oryzoe 24 4 Pseudomonas syringae pv tabaci 20 5 Xanthomonas campestris pv oryzicola 17 6 Ralstonia solanacearum 13 7 Erwinia carotovora subsp Carotovora 10 8 Ralstonia solanacearum 9 9 Xanthomonas campestris pv campestris 3 10 Clavibacter michiganensis subsp sepedonicus 3 11 Pseudomonas syringae pv lachrymans 2 12 Erwinia carotovora subsp Carotovora 1 13 Ralstonia solanacearum 1 14 Erwinia carotovora subsp carotovora 1 15 Ralstonia solanacearum 1 16 Xanthomonas campestris pv pruni 1 Http 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Http Http 1 2 6 7 2 2 2 2 2 1 5 4 4 4 3 3 1 17 14 13 3 11 11 1 2 3 4 5 6 7 8 9 10 11 12 13 Http benziothiazolinone Krebs Cycle Acetyl coenzyme A Pyruvate Glucose Oxaloacetate Citrate Ketoglutarate Succinate Electron transport system Http Benziothiazolinone 2016 06 18 6 14 2011 5 2011 32 28 4 2011 6 14 5 5 2016 6 14 2016 07 07 06 6 14 2011 5 42 2016 6 14 2014 08 2014 08 2014 08 2014 08 NHCNH O N Cl 02787286908 623768046 1800 2700 900 Lee and Oda 2003 1 28 35 32 57 5 52 Huang et al 2016 Horticultural Plant Journal Kong et al 2017 Food Chemistry Chieri Kubota 2015 40 30 5 1 1 10 94 93 32 58 14 79 99 89 98 69 10 41 67 5 38 10 1 85 1 13 70 95 5 100 90 90 20 4 30 10 2 57 4 63 95 80 5 20 3 10 10 Vegetable Grafting Principles and Practices 2017 1 2 Q 3 4 5 6 5 20 1 2 3 2009 2011 1 1 2 https projects ncsu edu mckimmon cpe opd VGRAFTING LED Lighting Technology and Equipment for Vegetable Transplant Production 2015 Venlo glass greenhouse in 15 60 Ha Plastic greenhouse in 3000 5000m 2 Vinyl house and Chinese style greenhouse in 400 1200 m 2 70 105 kg m 2 35 50 kg m 2 10 35 kg m 2 1000 m 2 600 1000 m 2 300 500 m 2 50 100 m 2 High income High efficiency 1200 1600 Yuan m 2 High income Middle efficiency 600 1000 Yuan m 2 Low income Low efficiency 50 100Yuan m 2 Supplemental light Natural light Chinese style greenhouse 300 500Yuan m 2 Tomato Yield Change and Profit Balance in Holland Greenhouse kg m 2 Year kg m 2 Sensors Aerial environment such as temp RH CO 2 conc air flow etc pH EC Ions CO 2 exchange photosynthesis Water use transpiration Fluorescence Plant mass Plant temp Equipment Operation Sum screen lamps Photoperiod Spectrum Direction diffuse interlight Cooling and dehumidify by window opening Screen operation Cooling by heat pump or mist or pad and fans Heating Irrigation and fertilizer Humidifyers Air circulation Robotics Light Plant growth strongly correlated with light Young crop needs to build up leaf area LAI 1 less light means 1 lower yield Crop Yield reduction at 1 less light Lettuce 0 8 Radish 1 0 Cucumber 0 7 1 0 Tomato 0 7 1 0 Rose 0 8 1 0 Chrysanthemum 0 6 Pointsettia 0 5 0 7 Ficus benjamina 0 6 Environ Control Related to Yield in Greenhouse Light is almost never too much unless shade plant or temperature gets too high Light sum MJ m 2 Yield kg m 2 No screen used 629 100 16 5 100 Screen when radiation 650 W m 2 566 90 16 97 550 W m 2 532 85 15 6 95 450 W m 2 503 80 15 3 93 Lighting Approach to Maximize Profit LAMP US growers in the northern states use supplemental lighting SL in greenhouses in winter months but electricity for SL is very high Dr Marc van Iersel University of Georgia US greenhouse production has a thin profit margin therefore cost effective SL is what growers need Optimizing cost effectiveness of lighting in CEA Cost effective lighting strategies to optimize crop growth quality Lighting controllers that can automatically implement these strategies New sensing technology for monitoring crop growth and physiology Software to assess whether use of supplemental lighting is economical Software and hardware to implement cost effective lighting strategies Software to simulate different lighting scenarios Virtual Grower with USDA ARS UGA led USDA funded project 2018 Optimizing cost effectiveness of lighting in CEA Biofeedback control of supplemental lighting http hortphys uga edu research lighting html Measuring chlorophyll fluorescence several parameters Biofeedback system LED lighting on off duration etc UGA Project Lighting Approach to Maximize Profit Agriculture 1 Crop growth and yield can be increased by optimizing light spectrum light intensity light capture 2 Crop quality and value can be increased by altering light spectrum intensity photoperiod and timing of light delivery Economic assessment 1 The return on investment of lighting can be improved using models that consider plant physiological responses crop value real time electricity pricing and sunlight 2 Carbon footprint life cycle assessment and economic cost analysis 3 Quantitative ination on the costs and benefits of lighting Engineering 1 Controllers to implement lighting strategies will facilitate adoption of more cost effective lighting strategies 2 Develop canopy sensors to track growth and light use efficiency 2013 2017 7 4700 LED lighting control in plant factory for energy saving LED Technology development of multi cultivation system Light temp intergraded control for energy saving in plant factory Nutrient solution control in plant factory Intelligent environmental control technology in plant factory Application demonstration in plant factory with artificial lighting Application demonstration in plant factory with natural lighting 6 1300 LED 589 774 1363 LED 636 828 1464 LED 590 774 1364 LED 450 612 1062 LED 452 612 1064 5 2717 kLux h d 1 mol m 2 d 1 umol m 2 s 1 h d 1 mol m 2 d 1 11 4 26 10 2 6 3 145 8 7 2 36 11 5 33 10 2 8 1 188 11 3 0 54 11 6 25 9 8 5 3 123 7 4 3 30 11 7 37 10 3 9 6 223 13 4 1 01 11 8 4 10 3 10 2 235 14 1 1 52 11 9 14 10 2 4 1 95 5 7 4 52 11 10 17 10 2 4 3 99 5 9 4 36 11 11 26 10 2 5 7 132 7 9 2 92 11 12 31 10 3 8 2 189 11 4 0 46 11 13 8 10 2 2 3 54 3 2 6 32 11 14 38 10 3 9 3 215 12 9 0 64 11 15 32 10 3 7 8 182 10 9 0 80 11 16 21 10 3 5 9 138 8 3 2 70 11 17 5 10 2 2 2 52 3 1 6 41 11 18 8 10 3 1 8 42 2 5 6 83 11 19 32 10 0 7 1 165 9 9 1 52 11 20 2 9 5 0 7 17 1 0 7 92 11 21 15 10 3 3 4 78 4 7 5 27 11 22 29 10 0 7 7 179 10 7 0 91 11 23 42 10 0 6 7 155 9 3 1 93 203 117 2706 162 56 240 173 4000 240 168 kLux h d 1 mol m 2 d 1 umol m 2 s 1 h d 1 mol m 2 d 1 1 10 36 0 11 3 7 1 165 9 9 1 50 1 11 28 0 11 3 6 8 157 9 4 1 85 1 12 26 0 11 3 1 3 31 1 9 7 29 1 13 0 7 11 4 0 3 7 0 4 8 34 1 14 17 0 11 3 4 0 92 5 5 4 67 1 15 2 0 11 2 1 1 25 1 5 7 55 1 16 2 1 11 2 1 4 33 2 0 7 21 1 17 2 1 11 3 1 1 25 1 5 7 56 1 18 2 1 11 2 1 0 23 1 4 7 63 1 19 2 3 11 0 1 0 22 1 3 7 69 1 20 2 1 11 2 0 9 20 1 2 7 76 1 21 2 3 11 1 0 7 17 1 0 7 91 1 22 0 7 10 6 0 5 12 0 7 8 10 1 23 0 7 11 1 0 5 12 0 7 8 14 1 24 0 6 11 1 0 5 12 0 7 8 11 1 25 0 5 11 9 0 5 12 0 7 8 13 1 26 23 0 11 6 3 0 69 4 2 5 65 1 27 31 0 11 3 7 5 174 10 5 1 11 1 28 10 0 10 0 2 4 55 3 3 6 27 1 29 21 0 10 3 4 4 101 6 1 4 27 1 30 39 0 11 3 9 6 223 13 4 1 00 1 31 31 0 11 3 7 1 164 9 9 1 54 245 63 1454 87 127 240 173 4000 240 173 1 2 3 4 5 6 100 200 300 400 500 e d b c c a a a d c bc bc ab b a a 17 28 14 40 12 96 11 52 10 80 8 64 5 76 Fresh mass g plant Daily light integral mol m 2 d 1 y 0 896 1 x 0 559 R 2 0 722 4 32 4 32 5 76 8 64 10 80 11 52 12 96 14 40 17 28 Daily light integral mol m 2 d 1 Fitted line Measured value Dry mass g plant y 15 265 1 x 0 128 R 2 0 842 y 381 7ln x 521 24 R 0 90 0 100 200 300 400 500 600 700 024681 01 21 41 61 82 0 CO 2 mmol m 2 d 1 DLI mol m 2 d 1 y 30 93e0 18x R 0 72 0 100 200 300 400 500 600 700 024681 01 21 41 61 82 0 CO 2 mmol m 2 d 1 DLI mol m 2 d 1 LED Treatments Light intensity mol m 2 s 1 Photosynthetic photon flux mol m 2 s 1 Ratio 400 500 nm 500 600 nm 600 700 nm 700 800 nm R B R FR LED lamp L0 7 254 16 57 86 41 5 0 7 9 1 L1 3 245 8 43 75 56 4 1 3 13 7 L1 5 262 24 42 85 63 8 1 5 8 3 L1 9 241 4 44 47 85 20 1 9 4 3 L3 5 253 16 39 2 136 1 3 5 L4 6 249 6 16 92 73 8 4 6 9 2 Fluorescent lamp F0 7 257 15 61 80 46 5 0 7 10 1 F1 7 252 22 41 77 70 7 1 7 9 9 F2 9 263 30 30 78 88 10 2 9 9 2 Temp germination stage light 28 1 dark 22 1 seedling stage light 24 1 dark 20 1 Relative humidity light 80 10 dark 70 10 CO 2 concentration 400 100 mol mol 1 Nutrient solution Japan Horticultural Research Center ula for seedling pH 6 8 7 2 EC 2 0 2 5 mS cm 1 15 cm 150 umol m 2 s 20 cm 120 umol m 2 s 30 mm s 0 03 m s 5 1 6m 30 LED 25W 220V 12m 30 LED 16W 30 480W 0 5m 3 12m 18 m 2 54 m 2 30 5 150 LED 120 20 50 cm 80 umol m 2 s 80 cm 50 umol m 2 s 0 100 200 300 400 500 600 91 01 11 21 31 41 51 6 mg 1 DLI mol m 2 d 1 F1 8 L0 9 L1 2 L2 2 0 100 200 300 400 500 600 91 01 11 21 31 41 51 6 mg 1 DLI mol m 2 d 1 F1 8 L0 9 L1 2 L2 2 cv cv R B 1 2 LED 250 mol m 2 s 1 R B 1 2 LED 100 molm 2 s 1 d e ab d c c cd d ab b d a 0 1 2 3 4 5 6 7 8 9 10 F1 8 L0 9 L1 6 cm P200 P250 P300 P350 bc c bc bc bc c ab bc bc ab b a 0 1 1 2 2 3 3 4 4 5 5 F1 8 L0 9 L1 6 mm P200 P250 P300 P350 bc c c b c c ab bc bc ab a a 0 2 4 6 8 10 12 14 16 18 20 F1 8 L0 9 L1 6 G mg d P200 P250 P300 P350 c c d c cd d b bc cd ab ab a 0 00 0 05 0 10 0 15 0 20 0 25 0 30 0 35 0 40 F1 8 L0 9 L1 6 P200 P250 P300 P350 b e bc d e d ab de c a d ab 0 1 2 3 4 5 6 F1 8 L0 9 L1 6 g P200 P250 P300 P350 bc c c bc c c b c bc ab ab a 0 0 0 1 0 1 0 2 0 2 0 3 0 3 0 4 0 4 0 5 0 5 F1 8 L0 9 L1 6 g P200 P250 P300 P350 ab ab ab ab b b ab b b a ab b 0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 F1 8 L0 9 L1 6 g P200 P250
展开阅读全文

华科资源|Richland Sources @版权所有